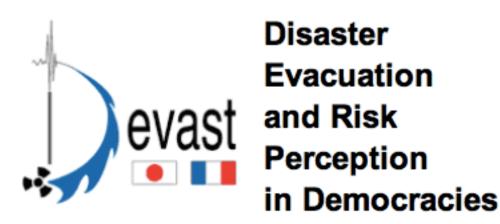
Disaster Waste Management

THE CASE OF JAPAN'S 11 MARCH 2011 EARTHQUAKE AND TSUNAMI – JAPAN AND THE INTERNATIONAL RESPONSE


unun

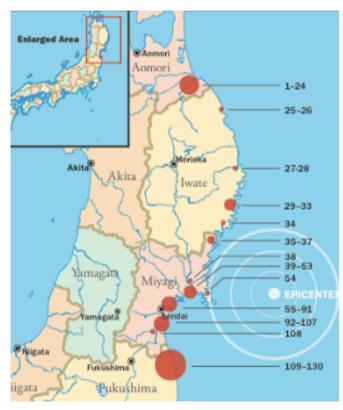
Erin Kennedy, PhD Candidate Erin.Kennedy@soch.lu.se

SIGI

Disaster EVAcuation and RiSk PercepTion in Democracies (DEVAST)

Purpose: to analyse the chain of impacts, from the immediate response to the long-lasting impacts induced by the Great East Japan Earthquake and the following Fukushima nuclear accident, focusing particularly on the displacement of population.

Democracy and Disaster Evacuation – Lessons from the Fukushima Catastrophe


Chapter Topics

- How the disaster unfolded: the organization of the evacuation process
- Away from home: the evacuation through the lens of the evacuees
- Tensions and inequalities in the evacuation process
- To be a "flyjing" or not to be. The dilemma of foreigners living in Japan during the crisis
- Evacuation and disasters: an international comparison

- Perspectives of return and consequences of the evacuation
- Disaster Waste Management the cleanup of debris and decontamination process
- Reconstruction, disaster prevention and adaptive capacity
- Nuclear governance after the Fukushima accident
- The meanings of the disaster for the Japanese
- How democracies deal with disasters

Great East Japan Earthquake in the Tohoku Region

3 Main Prefectures

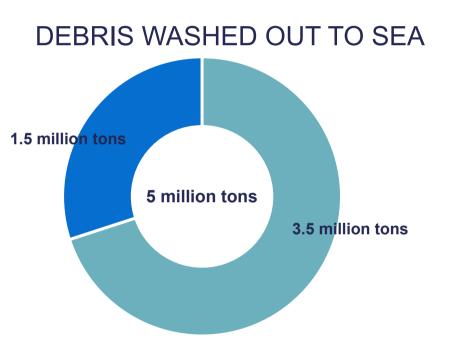
- Iwate
 Fukushima
- Miyagi

Triple Disaster

- 9.0Mw Earthquake
- Tsunami reaching 40.5 meters
- Dai'ichi Nuclear Power Plant Explosions

Over 400,000 people displaced

Long-term emotional, physical and mental impacts



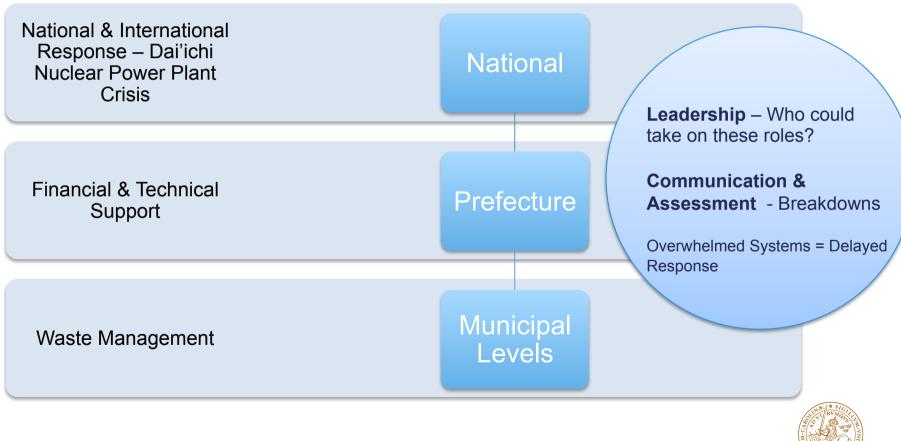
Structural and economic figures do not account for the true loss experienced

Earthquake and Tsunami Debris

- Debris Settled on Seabed of Japan's Coastline
- Debris Floating out to Sea

- Total tons of debris = 20, million tons
- 5 million tons –
 Washed out to sea

Tsunami Debris – Complications



- 1. Identification and recovery of 4. materials
- Hazardous and nonhazardous, biodegradable, recyclable and non-recyclable mixed together
- Salt water bath increases corrosion, incineration is more difficult

- Debris scattered on land and dragged out to sea hazardous to the marine life
- 5. Tsunami sludge

Response – systems in place

Unknown Risks – Chemical Contamination

In accordance with Japan's Pollutant Release and Transfer Register (PRTR) it is dependent on the company's size that indicates if it is required for a company to report the amount of priority hazardous chemicals released or transferred each year (Bird & Grossman 2011). A lack of information is crippling when attempting to develop waste management methods that are safe for the population as well as the environment.

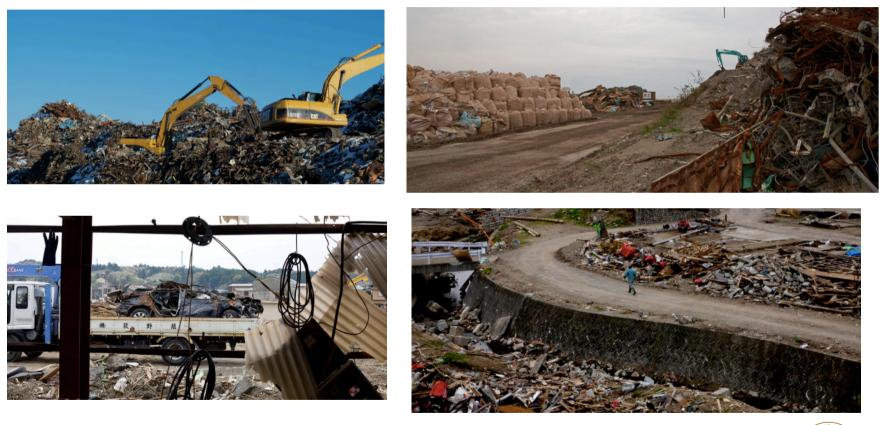
Local Response

Sendai

Strengths

- Contingency plan
- Tohoku University
- Maximized local business opportunities
- More residential
 materials that industrial

Ofunato


- Strengths
 - Adaptation of undamaged facilities
 - "Safer" storage of hazardous materials
 - Taiheiyo Cement Corporation

Soma

- Difficulties
 - Close proximity to Dai'ichi Nuclear Power Plant
 - Local & National Resistance – the the treatment and disposal of debris
 - Tsunami Sediment contamination of agricultural soil – no disposal place

Public Response to Disaster Waste Management

Conclusion

- Communication
- Information sharing
- Shared chemical information
- Open source disaster debris management systems

Erin Kennedy@soch.lu.se

LUNDS UNIVERSITET