

Flood risk management in the Netherlands

Ruben Jongejan

Jongejan

Outline

- Introduction
- Quantifying the risk of flooding
- Evaluating risk acceptability
- Conclusions

Higher lands Flood prone areas

A history marked by floods

Major Flood of 1953

> 1800 fatalities
> 1800 km² flooded

Major Flood of 1953

Jongejan

Jongejan

Jongejan

Recent innovations

Building with Nature: Sand engine

Hidden structures

Jongejan

Current standards

Defined in terms of design loads

1 Standard for each major levee system

Based on cost-benefit analyses from the 1950s and 1990s

VNK2-project objectives

Provide detailed flood risk estimates...

- Economic risk
- Fatality risk
- ... for all 53 major levee systems
 - 3600km of levees
 - 60% of Dutch territory

Participating organisations

Government bodies

- Rijkswaterstaat
- More than 20 water boards
- 12 Provinces

Research institutes/networks

- TNO
- Deltares
- Delft University of Technology
- Expertise Network for Flood Protection (ENW)

Engineering consultancies

- Arcadis
- DHV
- Fugro
- Greenrivers
- Grontmij
- HKV Consultants
- Hydraulogic
- Infram
- IV-Infra
- JongejanRMC
- Lievense
- Oranjewoud
- Royal Haskoning
- RPS
- Tauw
- Witteveen+Bos

Risk analysis procedure

- 1. Decompose levee system into smaller sections
- 2. Calculate failure probabilities per section
- 3. Define flood scenarios and compute their probabilities
- 4. Estimate consequences per flood scenario
- 5. Combine scenario probabilities and consequences

1. Decompose levee system

Jongejan

2. Calculate failure probabilities

Failure mechanisms

2. Calculate failure probabilities

	Section 1	Section 2	Section j	Combined
Mechanism 1	P ₁₁	P ₁₂	$P_{1\mathrm{j}}$	P _{1,ring}
Mechanism 2	P ₂₁	P ₂₂	P_{2j}	P _{2,ring}
Mechanism i	P _{i1}	P _{i2}	P _{ij}	P _{i,ring}
Combined	P _{mech,1}	P _{mech,2}	P _{mech,j}	P _{flood}

Correlations are taken into account

3. Define flood scenarios and calculate probabilities

Flood scenario = Sequence of events, initiated by one or more section failures

These 4 sections fail and no other section fails

4. Estimate consequences per scenario

4. Estimate consequences per scenario

5. Combine probabilities and consequences

Analyzing the effect of flood risk management actions

Evaluating current practice

The same standards for the north and the south?

Results of VNK2

- Insight
 - into the risk of flooding
 - into the inefficiencies of the "old" standards/practices
 - into key risk factors
- Confidence in the feasibility of a probabilistic approach
- Greater familiarity with basic concepts in risk analysis

Strategic choices - the Delta Program

- Crisis management

 e.g. <u>www.overstroomik.nl</u>
- 2. Spatial planning

3. Prevention

New standards of protection (2017)

Based on:

- Individual risk < 10⁻⁵ per year
- Societal risk
- Cost-benefit analysis

Individual risk < 10⁻⁵ per year

Societal risk

Jongejan

New flood protection standards (2017)

- 1/100 1/100,000 per
 year
- Variations within major levee systems

Closing remarks

- Dutch flood risk management practices are strongly risk-informed
- The focus lies heavily on prevention, with an eye for crisis management and spatial planning
- New flood protection standards (2017) based on:
 - individual risk < 10⁻⁵ per year
 - societal risk evaluation
 - cost-benefit analysis

Ruben.Jongejan@JongejanRMC.com +31 6 1499 6316

Organization of flood protection

National government

- legislation (protection standards)
- financial assistance
- management of coastline, rivers and several large dams/barriers

12 Provinces

- supervision
- spatial planning

25 Water boards (levee owners)

- periodic safety assessments
- maintenance, restoration projects

A short history of the Dutch protection standards

1953 Major Flood

1953-1960 Delta Committee Design standards based on cost-benefit analysis

1995 Flood Protection Law (later: Water Law) Standards codified, also for river areas

A short history of the Dutch protection standards

Strategic

Important aspects:

• Climate change

Operational

Important aspects:

•

Budget constraints

Scientific progress

- Economic growth
- Population growth
- Changing preferences

2. Calculate failure probabilities

Individual risk

Probability of dying at a particular location:

